Pipeline Designer
Test your RAG system before writing a single line of code. Configure and export ready-to-use pipelines.
Pipeline Flow
Document Loader
Text Splitter
Embedding Model
Vector Store
Retriever
Parameters
Generated Python Code
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
# Load documents
loader = PyPDFLoader("your_file_path")
documents = loader.load()
# Split documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
chunks = text_splitter.split_documents(documents)
# Create embeddings
embeddings = OpenAIEmbeddings
# Create vector store
vectorstore = Chroma.from_documents(
documents=chunks,
embedding=embeddings
)
# Create retriever
retriever = vectorstore.as_retriever()
retriever.search_kwargs = {"k": 4}
# Query example
query = "Your question here"
relevant_docs = retriever.get_relevant_documents(query)
print(f"Found {len(relevant_docs)} relevant documents")
for i, doc in enumerate(relevant_docs):
print(f"\nDocument {i+1}:")
print(doc.page_content[:200] + "...")Pipeline Design Tips
- • Start with smaller chunk sizes (500-1000) and increase if context is lost
- • Use 10-20% overlap to maintain context between chunks
- • MMR retrieval reduces redundancy in results
- • Consider your embedding model's token limit when setting chunk size